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Fast growth of computational costs with that of the system’s size is a bottleneck for the applications of
traditional methods of quantum chemistry to polyatomic molecular systems. This problem is addressed by
the development of linear (or almost linear) scaling methods. In the semiempirical domain, it is typically
achieved by a series of approximations to the self-consistent field (SCF) solution. By contrast, we propose a
route to linear scalability by modifying the trial wave function itself. Our approach is based on variationally
determined strictly local one-electron states and a geminal representation of chemical bonds and lone pairs.
A serious obstacle previously faced on this route were the numerous transformations of the two-center repulsion
integrals characteristic for the neglect of diatomic differential overlap (NDDO) methods. We pass it by replacing
the fictitious charge configurations usual for the NDDO scheme by atomic multipoles interacting through
semiempirical potentials. It ensures invariance of these integrals and improves the computational efficiency
of the whole method. We discuss possible schemes for evaluating the integrals as well as their numerical
values. The method proposed is implemented for the most popular modified neglect of diatomic overlap

(MNDO), Austin model 1 (AM1), and PM3 parametrization schemes of the NDDO family. Our calculations
involving well-justified cutoff procedures for molecular interactions unequivocally show that the proposed
scheme provides almost linear scaling of computational costs with the system’s size. The numerical results
on molecular properties certify that our method is superior with respect to its SCF-based ancestors.

1. Introduction proposed to avoid this step: the divide-and-conquer scléme,

The perspectives of quantum chemistry as a valuable tool in the density matrix search meth&tland methods based on the
chemical research are generally attributed to its ability to predict !ocalized molecular orbitals in orthogoftaind nonorthogon&
the electronic structures and properties of molecular systemsformulations. The possibility to devise semiempiri€(N)-
with a high degree of accuracy for reasonable time intervals. Methods opens access to the development of the quantum
Nowadays, modern ab initio methods allow us to obtain very Mechanical (QM)/QM hybrid schemes, where the environmental
accurate results for small molecufeBhe price for this accuracy ~ '€gion is treated by semiempirical methods of quantum chem-
is very fast growth of the required computational resources with iStry.*® It allows us to solve the problem of the intersubsystem
that of the system’s sizé\¢ — N,” whereN is the dimension of ~ junction in these methoqls by a sequential derivation based on
the basis set). It limits the area of applicability of these methods the perturbation expansiofis.
to small- and medium-sized molecules. Although the develop- The main purpose of semiempirical methods is to provide a
ment of computer technology pushes forward our computational reliable quantum description for large and ultralarge molecular
abilities, the problem of large-scale calculations remains actual, Systems. The developmental perspectives for the semiempirical
especially taking into account the growing needs of biological domain are usually considefédrom the viewpoint of improv-
chemistry and nanochemistry. ing the existing parametrization schemes, adding classical terms

There are two solutions to this problem proposed in the responsible for the dispersion interactions and introducing
literature. The first one is the construction of hybrid schemes sophisticated orthogonalization correctirand effective core
where different parts of a molecule are treated using different potentialst>1®These modifications are devised within the basic
methods?3 Typically, a reaction center is described by some one-determinant approximation. An alternative route is based
quantum chemical methods, while the environment is accountedon the account of electron correlation given by several tech-
by classical force fields. The second solution is based on the niques employing perturbation expansiéhgffective Hamil-
construction of schemes with linear or almost linear dependencetonians;® valence bond4? and multireference configuration
of the required computational resources on the system’s sizeinteraction? In the present paper, we pursue the goal of
(O(N)-methods)5 The localization of electronic degrees of improving both the wave function’s structure and the scalability
freedom due to the exponential decay of the one-electron densityproperties in the framework of the NDDO parametrization.
matrix elements in the coordinate spaead the “principle of In a series of paperd; 23 we have proposed and developed
nearsightedness” by Kohprovide physical grounds for these a family of variational semiempirical methods based on the trial
schemes. It is important that most of tk¥N)-methods are wave function in the form of the antisymmetrized product of
targeted to the tight-binding model, and the required scalability strictly local geminals (SLG). It takes into account the intrabond
is achieved by a loss of accuracy. (“left—right”) electron correlation, while the interbond electron

In the semiempirical domain, the growth of computational transfers are totally neglected because of the strictly local (atom-
costs with the system’s size scales\#because of the necessity centered) character of one-electron states. These methods (quite
to diagonalize the Fock matrix. A series of approaches has beensurprisingly) required only a minor re-parametrization of the
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standard parameters’ sets and provide the numerical estimatesiormalization condition

of heats of formation and eqilibrium geometridg3as well as

vertical ionization potential® which are superior by accuracy [(Dlgmg:]|OD= um2 + um2 + 2Wm2 =1 4)

with respect to the corresponding SCF procedures. It was also

shown that the SLG methods have a great potential in the Thus constructed geminals are strictly local, because their carrier

derivation of classical force fiel@sand the development of  spaces are formed by strictly local (one-center) orbitals. The

hybrid quantum/classical schemes. total wave function is constructed as their antisymmetrized
When the MINDO/3 semiempirical Hamiltonighis used, product

the SLG scheme leads to almost linear scaling of computational

costs with the system’s size (the quadratic term becomes W= |_|9$|0D (5)

dominating only for very large molecular systeris)The m

NDDO-type Hamiltonian assumes a more detailed account of

the two-center Coulomb interactions. In combination with the

SLG wave function, it leads to the necessity of numerous

integral transformations induced by basis set transformations. P:]tqf: Zm)lgmtﬁnt'mg;IOD

g

The electronic structure of geminals can be characterized by
the elements of one- and two-electron density matrices

This step dominates the whole procedure and predetermines the

quadratic scalability of the SLG-NDDO meth@ésvith sub-

stantial coefficients at the quadratic terms. In the present paper, rt= 0|g i+ ]’,’f ot g+|OD
we consider long-range Coulomb interactions in the standard m Mmoo o mo=m
NDDO methods (MNDGY AM1,28 and PM3°) and demon-
strate that the scheme previously adopted for estimates of the
two-center repulsion integrals is not optimal for a local

P =2y + W)

description of electronic structure. In the next section, we Plr!qzz(”mz"‘wmz)
describe the SLG-NDDO approximation for the electronic

structures of molecules and show that a modified form of P[Lz P'nz: 2Uy, + Wy,
molecular integrals leads to significant simplification of the

whole procedure. Then, we compare different schemes for the Mm=uy?

estimates of the two-center repulsion integrals and present
numerical results demonstrating the scalability properties and
the quality of the calculated heats of formation for the modified

SLG-NDDO procedure. Finally, we draw several conclusions " r 2
on the perspectives of fast semiempirical methods with a local L= =Wy, (6)

description of both electron correlation and one-electron states. . ) .
P (Notation here differs from that adopted in refs 21 and 23,

2. Method namely, by coefficient 2 &)
. . . . . The total energy is the sum of the electronic energy and the
2.1. Strictly LOC?' Geminals. In_thls section, we _cc_)n5|der & core—core repulsion. The form of the last term adopted in the
sequence of basic steps leading to semiempirical NDDO MNDO, AM1, and PM3 methods is given in refs 229,
methods employing a trial wave function in the form of the  espectively. The electronic energy can be expressed through
antisymmetrized product of strictly local gemin&isThe first e jensity matrices and molecular integrals. The transformation
step in the wave function construction consists of orthogonal 4¢ the gne-glectron basis set induces the transformation of all
4 X_4 transformatu_)ns of atom|c_ orbltals_ (AOS‘_) for each atom g jecylar integrals (those of resonance, core attraction, and
Awith an{sp} basis set producing hybrid orbitals (HQ) intraatomic and interatomic Coulomb repulsion). The electronic
4 A 4 energy is a sum of five terms according to the types of
b = ;hmi &, @) interactions in the Hamiltonian

nm_ . 2
rm_ Um

Each transformation matrik”® is parametrized by six Jacobi E=Ec awr T Bocrep T Eres T Ec-rep T Em-p (1)

2?13{2? For hydrogen atoms, the only HO coincides with the 1S ¢ ontribution from the attraction of electrons to cores is

The HOs are assigned to geminals representing chemical E — UA + S VA )pt 8
bonds and lone pairs: Each chemical bond is spanned by two catr Z e U, 4 bt ®)
orbitalsr and| for the right and left ends of the bond; each

lone pair is described by only one H®).( The mth geminal The intraatomic contribution due to the electron repulsion is a
representing a lone pair is given by one configuration sum of contributions involving one and two HOs
+_ A+t "t
On = "o T ) Eocrep= Z{ (bl totd T+ 7 > [2(ttl ) —
tme tmheA
with both electrons residing on the same HO, while the same m=n
geminal representing a chemical bond is a linear combination (Lt ) P};Pn""} (9)
of three singlet configurations

The resonance interaction (electron transfer) is a sum of

O = Un e T T U g WorU g L - I ) (3) intrabond contributions
where the first two configurations are ionic and the last one is Eos= —2 /ZB B P[L (10)
covalent. The geminals are mutually orthogonal and satisfy the BricAB
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where the notatioom €AB means that themth bond is one nonbonded atoms, and numerous summations in egs 13 and 14
between atom# andB. The two-center electron repulsion can must be explicitly performed, making the whole procedure very

be written as time-consuming.
» The Coulomb interaction between nonbonded atoms given
Eicrep= ;B Z Z(tmtmltht'n)AB[(l — O PEP. + by eq 13 can be formally rewritten in the form
< tme he
20 T 1)  Beou=[Za(s3"+ Zm(mmA]-[—zB|s98 + §BF>E|nn)B]
me. ne (15)
The last contribution describes NDDO-specific interactions of
single bonds constituting one multiple bond wheree denotes interaction between two charge distributions.
The strictly local character of one-electron basis functions
Enp=— Z (tmt;1|f;jm)ABp[]'1 PL‘ (12) forming carrier spaces for geminals allows us to introduce point
treA multipoles describing charge distributions for atoms (given by
m<n the expressions in square brackets in eq 15) with definite

densities on the HOs. For convenience, we write them in the

wheret = | for t =r andt =r fort = I. units —e. The atomic charge (monopole) is then

The total energy is a function of two classes of electronic

structure parameters (transformation matribesnd geminal AN pAoZA
plitudesun, vm, @andwy) which are all determined variation- 4

ally. It is important that the total number of these parameters is
proportional to the system'’s size (for the traditional SCF scheme, The characteristic lengths defining the dipole moment for an
the number of electronic structure parametersMO LCAO (sp)-distribution and the quadrupole moment for a (pp)-
coefficients or elements of one-electron density scaleN?as distribution depend on the principal quantum numibéor the
and they describe local fragments of electronic structure. It is a sp shell and the orbital (Slater) exponents
necessary prerequisite for constructing a linearly scaling method.
The limiting factor in calculations are summations over the two- on+1 (4Cn$Cnp)”+l’2
center repulsion integrals (i.e., transformations of these integrals 1= /3 E +E )2n+2
from the basis of AOs to the basis of HOs). Here, we consider ns np:
a direct way to accelerate this step and to construct a linearly

scaling procedure for NDDO calculations of molecular energies. D. = (2n+1)(@n + Z)C -1 (17)
2.2. Multipole Expansions. The energy of the Coulomb 2 20 np
interaction for two nonbonded atomsandB can be extracted ) ) )
from the total SLG energy and rewritten in a simple form By using these parameters and the representation of a hybrid
orbital in the quaternion formsg, 7m),%* where s, and three
ELS = 2"Z%(s9s9™® + Z\;Bpﬁ PE(mmnn)*® — components o are, respectively, the coefficients of the s
AN and R, py, p; AOs in the expansion of HOs explicitly referring

Sy are invariant under rotations of either the molecule itself or
the laboratory coordinate frame, whereas the coefficents forming

A B AB B AB to their tensor properties (i.e., to the fact that the coefficients
z EBPn(sqnn) —7 Zm(mmss (13) prop (
ne me

where we use the simplified notation for t;,, and |:>ﬁ1 is the 7m transform as components of a 3-vector under similar
total electron density on this HO. It is important th&d,, rotations), we obtain the dipole moment of the charge distribu-
includes only the standard Coulomb part of the earere tion on atomA to be
repulsion. The two-center repulsion integrals entering eq 13 can A A A
be readily rewritten in the basis of AOs = 2D7 zAPQSmUm (18)

me

(sgnn)*® = ZBhEn hp (sgkl )*®
kle

The standard theory of multipole moments defines the quad-
rupole moment for a system of charges as

AB __ A LA i AB
(mmSS) £ h|m h]m(” |Ss Qaﬁ = XQ(SXOLX/; - rzaaﬁ) (19)

AB __ A LA 1B 1B/ AB This tensor is defined as a traceless one, because the trace enters
(mminn)™ = i;kZBh‘m Fim Py P 1) (14) only the energy contributions proportional A§ (wheref is a
potential, andA is a sum of second derivatives with respect to

These integrals have the tensor properties of correspondingCartesian coordinates, i.e., the Laplacian), which vanishes
multipole-multipole interactions. It can be used to construct exactly for the Coulomb potentidig.
effective schemes for their approximate evaluafibhe The Poisson equationf = 0 is, however, not valid for
standard NDDO schemes (MNDO, AM1, and PM3) replace the semiempirical potentiald. Therefore, in the semiempirical
multipoles by charge configuratioA3A point dipole is replaced  context, it is more convenient to introduce a second-order tensor
by two point charges of opposite sign, while the diagonal and with a nonvanishing trace instead of the usual quadrupole
nondiagonal components of a quadrupole moment are modelednoment
by three and four point charges, respectively. It is assumed that 1
these point charges interact th_rough semiempirical potentials, P quaxﬁ _ (D/ZA) Zpﬁ“ 32‘83/:1 (20)
producing necessary expressions for two-center molecular 2 &
integrals. This formulation does not allow one to get simple
expressions for the energy of the Coulomb interaction between It describes the distribution of charges but does not imply any
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assumptions about the properties of their interaction potential. dipole moments and the product of their projections on the line
To get back to the usual quadrupole moment, we introduce theconnecting atom# andB
total density on the p orbitals of atoasP) = ¥ meaPjl1 —

(sm)?. It leads to a compact expression for the true quadrupole —as _ _f'il oy e ‘ll e N =
moment on atonA Ell - R(AuA’ AuB) fll R (IMA' nAB)(/'tB' nAB) (27)
Q«’*: 6 — Z(DZA)ZpSi (21) The charge-quadrupole{lil;} = {02} or {20}, interactions

for semiempirical potentials are the following

The potentials acting between the multipoles are not those

known from electrostatics, since they are based not on the S=q"
Coulomb interaction of the form of/z but rather on a

semiempirical interaction potential approximating the effective

values of integrals in the region of intermediate interatomic E/;()B B[ %St + (f'2'0 O)(ﬁ B S h AB)] (28)
distances. The most popular semiempirical potential adopted

Elég?n':r?g? methods is that proposed by Dewar, Sabelli, and Under the additional assumptiakf = 0, one obtains

i} fl
02, & o 102),. B
EtrSB + (f02 - E)(nAB, 33, nAB)]

f|1|2(R) = [R2 + (10|1 + P|2)2]71/2 (22) EQIZB QA(fE)Iz 2)(ﬁAB! QBa Npp)

It depends on the type of interaction (indi¢eandl, correspond AB_ O [ 20,~ AA -

to the 21 and 22 poles located on atonsandB, respectively). Bz =5 \20 = R )(Mae @ Tag) (29)
The semiempirical approach to molecular integrals prompts two

types of formulas for interactions including quadrupoles: those The dipole-quadrupole{lils} = {12} or {21}, interaction in
based on the tensos and those based on an additional general formulation can be written as

assumptionof validity of the Poisson equation and, thus,

expressible through the usual quadrupole moment ter@ors AB f'l'zR

In the latter case, semiempirical potential is treated as if it =12 = R2 BA)trSB + 2@ » Mga)] +
satisfied the conditiom’\f = 0, simplifying the formulas but 2 _ g )
mathematically incorrect. The general expression for the interac- fi3 3f R+ 3f12 A NG $ n )
tion energy can be rewritten in a general form with the R? N Nag: A
components transforming as tensors
fR— 0 5 & SA =
Ec0u| qAGO %P + GUEE — 7h G — i G(ljg ﬁ/? B = T[(#B' AptrS + 2(°, S 1)l +
[s 20 B (s 21 B 1 71 q
aﬁ iﬁ + Sﬁﬁ Gaﬁq Guﬁy 14 + § Gaﬂy My + f21R2 3f ARt 3f21 QB A B)(n SA 5 B) (30)
S Gagro Sy (23) R AR T
where while in the case of the additional assumptidi= 0, one gets
Gl =Vv.V,.Vf (R 24y o R lzoa o
afu = YaVpValil, E,="———@", Q,Ngy +
3R

andVy, Vg, ... denote the Cartesian components of the gradient 1"1'2'R2 LR+ 3f’12/ A
operator. The Coulomb interactions between two nonbonded 6R2 Nga)(Mag: Q Nyp)

atomsA andB are classified according to the quantum numbers

[+ and |, of the AOs involved in the potential eq 22. The EAB_f'Z'lR_f'21 & oA

following cases can be specified (we assume that the values ofE,; (u~, QA Nap) +
all functions are estimated &g and writeR instead ofRag RZRZ
for brevity). IR —3R+3G, o
The charge-charge {1} = {00}, contribution reads 6R2 (@°, Tipp)(Tiag Q, Tiap) (31)
Ego = 0 qfog (25) The quadrupole quadrupole{l1l5} = {22}, interaction includes

derivatives of a semiempirical potential up to the fourth order
The charge-dipole, {l1l2} = {01} or {10Q}, interaction gives

two contributi fR —
0 contributions E,é\ZB 22 = 22[,[ e 4 Ztr(SASB)]
EpY = ooy (Rpp 1°) IR — 3fL R+ 3f.
. . 2 2 2 fipg { S + S1rS +
Eio = O fio(Nga 4 ) (26) R’
e fosR® — 6fyyR + 15f5,R — 156,
wherenpg is the unit vector directed from atod to atomB. 4 } Npg) + R X

The dipole-dipole,{l1l2} = {11}, interaction can be written A o p
as a sum of contributions proportional to the scalar product of (Nag s, Nae)(Nag, S Nap) (32)
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Under the additional assumptiakf = 0, it yields 0 ' ' ' T
R — 1.
EAB = 22_22“' (@QB) +
ST
SR — 3R+ 3,

9@ \ﬁAB’ QAQB’ _ﬁAB) +
YRS — 6fyR% + 15f5,R — 15,
36R°
(fiag @ Pa(iag, Q°, Tiag) (33)

Integral (ss|sz), eV

X

The formulas given above allow for relatively fast estimates of obr (; not Spustany
the two-center contribution to the total energy. Moreover, 25 . . . our (p adjusted)
derivatives of the total energy with respect to molecular 0 ! 2 8 4 5

Interatomic distance, A

geometry parameters can be easily calculated and used for an . ) )
efficient optimization. We implemented the SLG-NDDO method gilgtuz;r?c el' Dependence of thes§s)™ integral on the interatomic
employing the true multipole scheme for the two-center repul- '

sion integrals. In the next section, we give some numerical 45 . . . T
results illustrating its potential in semiempirical electronic ah our (p not adlusted) _
structure calculations. i

35| i
3. Results and Discussion 3 1

In the present paper, we develop a semiempirical methodE
based on the SLG wave function. Special attention is paid to £
the two-center repulsion integrals and interactions betweenlg’
nonbonded atoms. These integrals are the most important partg
of the NDDO scheme. It has been shown more than 50 years™
agco®34 that multipole expansions can adequately reproduce
analytical electron repulsion integrals for a wide range of e
interatomic distances. These ideas are used in the standard 5| N N |
NDDO methods where point multipoles are modeled by . S
appropriate charge configurations. The last approximation makes 0 1 2 3 4 5
the integrals non-invariant with respect to rotations of the Interatomic distance, A
coordinate frame, because the charge configurations haveFigure 2. Dependence of thesgs“ integral on the interatomic
nonvanishing higher multipole moments. In actual calculations, distance.
this non-invariance is masked by performing them in the
diatomic coordinate frame (rotations of the coordinate axes
induce rotation of the diatomic coordinate frame, and the

integrals are calculated identically). The formulas given in the oo .
f . . ; ..~ second one uses modified valuepa€producing the one-center
previous section restore the invariance, because they are writter}. ~ - -
imits (gss hsp, @andhyp). In the latter case, the value pf is not

in a tensor form. The change of the computation scheme leads dified 2. Th i d o, in the standard
to changes in numerical estimates, although both schemes havd10dne £2055)- 1€ parameterg, and pz In the standard
the same asymptotic behavior Bt — . We analyze the scheme are determined numerically. When we use the point

consequences of these modifications for the molecularintegralsmm'“p()l_es a?d tt::e'r |nteractl?ns, I\éve can O?tam analytical
and the total energy. expressions for these parameters. For example

First, we consider the two-center repulsion integrals on the h \13
example of two carbon atoms. Equation 22 shows that the —E(ﬂ) (34)

computation scheme, the one-center limit values also change.
Taking this into account, we can propose two different recipes:
The first one is based on the standard valueg,ofvhile the

Dewar-Sabelli-Klopman semiempirical potential depends on 173 D12

three parametergg, p1, andpy). In the standard formulatiot?,

these parameters are determined from the condition that at thelt leads to the estimate; = 0.969 982 7 au for carbon, which
limit R — O the one-center integrals describing the interaction can be compared with the standard value of 0.813 0983 au.
between two monopolesgd), two dipoles [y, and two Figures 1-3 illustrate the dependence of the integrals),
quadrupoles p) must be reproduced. This condition is of (sZs2, and §XsX (z axis connects two atoms in the diatomic
course arbitrary, and for example, the one-center limit for the coordinate frame) for the scheme based on the charge configu-
integral 6922 is not reproduced by this scheme. The reason is rations and for that based on the true multipoles with the
simple: In the sp basis, there are five independent one-centerstandard and modified parameters These figures show that
integrals (SlaterCondon parameteis®, F2, G1), which in the the curves differ significantly in the region of small interatomic
general case cannot be reproduced by only three parameters distances. By contrast, in the caseRof 2 A, all the curves
Moreover, these formulas are designed for interatomic distancesare quite close, so that only the closest neighbors are touched
not approaching zero. In the case of small interatomic distances,by the modification of the procedure. The convergence rate
the difference between integrals evaluated using the formulasstrongly depends on the integral type. In general, the curves
based on the charge configurations and based on the truewith the adjusted value qf; seem to be a better approximation
multipoles becomes significant. Therefore, when we change theto the standard ones than those based on the point multipoles
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45 T T T

0= . . —

standard
- our (p not adjusted) --------
‘I our (p adjusted) - A

KXl ]

3b _

Integral (sx|sx), eV

Quadrupole part of the integral (ss|xx), eV

/ : standard
1 : our (formulae based on 8) --------
/ i our (formulae based on Q) -+

) // a ) ) Ccl)ulomb J—
4 5 0 1 2 3 4 5
Interatomic distance, A Interatomic distance, A
Figure 3. Dependence of thessX°C integral on the interatomic Figure 5. Dependence of the differencegkX)°¢ — (s§s9°€ on the
distance. interatomic distance.

1 T T T T 35 T T T T

30

25

20

Quadrupole part of the integral (ss|zz), eV
ratio of calculation times

standard
our (formulae based on S) --------
/ our (formulae based on Q) ---------
Coulomb 0 ) ‘ . .
2 L L ) 0
0 1 2 3 4 5 0 20 40 50 20 00
number of C atoms

Interatomic distance, A
Figure 4. Dependence of the differencesz2°C — (s4s9<C on the Figure 6. Ratio of computation times for the SLG-MNDO method
interatomic distance. with different schemes for the two-center repulsion integrals.

with p; unchanged. At the same time, in the case of the integral the fact that all one-center integrals cannot be reproduced as
(s3s2), the better coincidence of the curve based on modified limiting cases of the corresponding two-center ones. In other
p1 with the standard curve in the region of smRlleads to a cases (standard scheme and that base®)othe one-center
worse agreement for larger valuesRf limit for the difference between these integrals (which is equal
We tested the performance of two types of procedures to —0.76 eV for the one-center integrals used in the MNDO
tentatively possible for evaluating interactions involving qua- scheme) is significantly overestimated.
drupoles. We considered thes@z? and 6€9xx) integrals. The It is important to test how the proposed modification of the
interaction of charges gives the main contribution to these computation scheme affects the performance of the SLG-NDDO
integrals. It is not affected by our modifications of the approach. The first step in this direction is to analyze the
computation scheme. Therefore, we analyze only the contribu- computation time as a function of the scheme and the system’s
tion having the form of the chargejuadrupole interactions (or,  size. As test objects, we consider regular hydrocarbon chains
equivalently, the differencess4z? — (s9s9 and 69xX) — CnHant2. Figures 5 demonstrate that at largBrthe change
(s9s9). These interactions constitute about 5% of the integrals of the scheme can only slightly affect the values of the integrals.
at the region of characteristic interatomic distances between Therefore, if the scheme based on the atomic multipoles is
bonded atoms, and their contribution decreasé® asor larger applied only to well-separated pairs of atoms, the modified SLG-
R. Figures 4 and 5 represent the dependence of these differenceBIDDO method can be used even with the parameters given in
on the interatomic distance calculated using the standardref 23 (i.e., without any additional re-parametrization). In
formulas and also formulas based on eqgs 28 and 29. Forsubsequent calculations, we adopt the atomic multipole scheme
comparison, we also plot these contributions for the usual for R > 3 A, while the short-range repulsion integrals are
Coulomb law¥/r. As expected, the expressions which do not calculated using the charge configurations scheme. To further
use the assumption of validity of the Poisson equation for the specify the computation scheme, we use the MNDO semiem-
potential give a better approximation to the standard values pirical Hamiltonian with the standard values of {hparameters
(especially for smallR). The difference between two ap- and the formulas based on titensor for the interactions
proximations based on the multipetenultipole interactions involving quadrupoles.
converges to zero in both cases Rs. In the case of the Figure 6 demonstrates the ratio of computation times for two
charge-quadrupole interactions given by eq 29, the one-center SLG-MNDO schemes (based on the charge configurations and
limit is exactly zero (§9pp) and 6€9s9 are equal). It illustrates  multipoles, respectively) as a function of the number of carbon
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Figure 8. Empirical distribution of errors for heats of formation as
obtained by the SLG-MNDO method.
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Figure 7. Dependence of computation times on the system’s size.

25 T T T T T
atomsn in CyHzn12. It can be seen that the dependence has two

regions: It is almost linear for smaller, and it is close to a 2r
constant for largen. It can be readily understood by taking 15
into account that in the case of the charge configurations scheme

a qudratic contribution to the dependence of computation costs
on the system’s size dominates over linear contribution even _
for small molecules. At the same time, the scheme proposed —f 0
above significantly reduces namely the quadratic component °
of this dependence, and for relatively small molecules, a linear
contribution dominates. It is important that in the limit of large

1+

05 -

-0.5

a4k

n, where a quadratic contribution is again dominant, the true 15+ .

multipole scheme leads to more than 30 ple acceleration of SLG- ol _

NDDO calculations. . . ‘ . emﬁifmﬁ'neegygﬁ *
Itis clear that simple replacement of the charge configurations 0 a5 0 5 0 5 10 15 20

AE, kcal/mol

by the atomic multipoles cannot affect the scalability of the . o .
method. Indeed, even very fast estimation of the two-center Flgu_re 9. Empirical distribution of errors for heats of formation as
Coulomb interactions leads to a quadratic dependence ofObta'nEd by the SCF-MNDO method.

computation costs on the system’s size for larger molecules. A yetailed discussion of the quality of the SLG-NDDO
To make the scheme truly linearly scaling, it is necessary t0 numerical estimates as compared with the SGIBPDO ones
neglect interactions between very distant atoms. Cutoff proce- g given in ref 23. In the present paper, we consider only the
dures of that sort are WeII_-jl_Jstifiec_i only for_local states. Inthe neats of formation on the same set of molecules as given in ref
case of the SLG method, it is particularly simple, because one- 23 The difference between calculated and experimental values
electron states forming carrier spaces are atom-centered. Figur@an pe found for each of the molecules and for the calculation
7 shows the dependence of the required computation time onmethods. This error can be considered as a random variable,
the system’s siza for the modified SLG-NDDO method where  and empirical distribution functions of errors for both methods
all interactions between atoms separated by more than 20 Acan be readily constructed. Figures 8 and 9 represent these
are totally neglected. This figure unequivocally demonstrates functions in the coordinates linearizing the normal distribution
that the method belongs to the family 6(N)-methods. Itis  piotted for the SLG-MNDO and SCF-MNDO methods, respec-
important that the cutoff procedure leads to a very small tively, as well as linear fits for both distributions. The assump-
modification of the calculated heats of formation (less than 0.03 tjon of a normal distribution law for the errors seems to be valid
kcal/mol per CH fragment). Of course, in the case of more for both methods, because the sets of points are close to the
polarized molecules with significant effective atomic charges, corresponding linear fits (values & are 0.967 and 0.983,
the charge-charge interactions beyond 20 A should be explicitly respectively). The abscissa for the crossing of a linear fit and
considered to obtain the same accuracy. We can try to comparehe x axis gives the value of tha parameter (average of the
our results (9000 atoms for about 100 s on a 0.7 GHz pentium error’s distribution), while the slope of a linear fit is 2. Our

lll computer) with those obtained in the framework of the analysis shows that the methods have equal values(about
LocalSCF method (120 000 atoms for about 16 000 s on a 2.47.6 kcal/mol), but the values of tha parameter differ
GHz pentium IV computer)? Direct comparison of these data  significantly. In the case of the SCF-MNDO method, this value
shows that the modified SLG-NDDO method is about 2 orders is —2.3 kcal/mol and certifies that heats of formation are
of magnitude faster than the LocalSCF one. At the same time, significantly underestimated in this method, while in the case
such a comparison is not quite correct, because the proteinof the SLG-MNDO method, the average is positive and its
calculated in ref 12 is not one-dimensional like the hydrocarbon magnitude is more than 5 times smaller, demonstrating the
chain and, therefore, requires more interactions to be taken intopractical absence of the systematic error in the SLG-MNDO
account. Moreover, the protein contains polar atoms whose long-calculations. According to the Student’s criterion, the average
range Coulomb interactions can affect the values of cutoff errors for these methods are statistically different with a
parameters necessary to obtain accurate results. probability larger than 90%.
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