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Fast growth of computational costs with that of the system’s size is a bottleneck for the applications of
traditional methods of quantum chemistry to polyatomic molecular systems. This problem is addressed by
the development of linear (or almost linear) scaling methods. In the semiempirical domain, it is typically
achieved by a series of approximations to the self-consistent field (SCF) solution. By contrast, we propose a
route to linear scalability by modifying the trial wave function itself. Our approach is based on variationally
determined strictly local one-electron states and a geminal representation of chemical bonds and lone pairs.
A serious obstacle previously faced on this route were the numerous transformations of the two-center repulsion
integrals characteristic for the neglect of diatomic differential overlap (NDDO) methods. We pass it by replacing
the fictitious charge configurations usual for the NDDO scheme by atomic multipoles interacting through
semiempirical potentials. It ensures invariance of these integrals and improves the computational efficiency
of the whole method. We discuss possible schemes for evaluating the integrals as well as their numerical
values. The method proposed is implemented for the most popular modified neglect of diatomic overlap
(MNDO), Austin model 1 (AM1), and PM3 parametrization schemes of the NDDO family. Our calculations
involving well-justified cutoff procedures for molecular interactions unequivocally show that the proposed
scheme provides almost linear scaling of computational costs with the system’s size. The numerical results
on molecular properties certify that our method is superior with respect to its SCF-based ancestors.

1. Introduction

The perspectives of quantum chemistry as a valuable tool in
chemical research are generally attributed to its ability to predict
the electronic structures and properties of molecular systems
with a high degree of accuracy for reasonable time intervals.
Nowadays, modern ab initio methods allow us to obtain very
accurate results for small molecules.1 The price for this accuracy
is very fast growth of the required computational resources with
that of the system’s size (N4 ÷ N,7 whereN is the dimension of
the basis set). It limits the area of applicability of these methods
to small- and medium-sized molecules. Although the develop-
ment of computer technology pushes forward our computational
abilities, the problem of large-scale calculations remains actual,
especially taking into account the growing needs of biological
chemistry and nanochemistry.

There are two solutions to this problem proposed in the
literature. The first one is the construction of hybrid schemes
where different parts of a molecule are treated using different
methods:2,3 Typically, a reaction center is described by some
quantum chemical methods, while the environment is accounted
by classical force fields. The second solution is based on the
construction of schemes with linear or almost linear dependence
of the required computational resources on the system’s size
(O(N)-methods).4,5 The localization of electronic degrees of
freedom due to the exponential decay of the one-electron density
matrix elements in the coordinate space6 and the “principle of
nearsightedness” by Kohn7 provide physical grounds for these
schemes. It is important that most of theO(N)-methods are
targeted to the tight-binding model, and the required scalability
is achieved by a loss of accuracy.

In the semiempirical domain, the growth of computational
costs with the system’s size scales asN3 because of the necessity
to diagonalize the Fock matrix. A series of approaches has been

proposed to avoid this step: the divide-and-conquer scheme,8,9

the density matrix search method,10 and methods based on the
localized molecular orbitals in orthogonal11 and nonorthogonal12

formulations. The possibility to devise semiempiricalO(N)-
methods opens access to the development of the quantum
mechanical (QM)/QM hybrid schemes, where the environmental
region is treated by semiempirical methods of quantum chem-
istry.13 It allows us to solve the problem of the intersubsystem
junction in these methods by a sequential derivation based on
the perturbation expansions.3

The main purpose of semiempirical methods is to provide a
reliable quantum description for large and ultralarge molecular
systems. The developmental perspectives for the semiempirical
domain are usually considered14 from the viewpoint of improv-
ing the existing parametrization schemes, adding classical terms
responsible for the dispersion interactions and introducing
sophisticated orthogonalization corrections15 and effective core
potentials.15,16These modifications are devised within the basic
one-determinant approximation. An alternative route is based
on the account of electron correlation given by several tech-
niques employing perturbation expansions,17 effective Hamil-
tonians,18 valence bonds,19 and multireference configuration
interaction.20 In the present paper, we pursue the goal of
improving both the wave function’s structure and the scalability
properties in the framework of the NDDO parametrization.

In a series of papers,21-23 we have proposed and developed
a family of variational semiempirical methods based on the trial
wave function in the form of the antisymmetrized product of
strictly local geminals (SLG). It takes into account the intrabond
(“left-right”) electron correlation, while the interbond electron
transfers are totally neglected because of the strictly local (atom-
centered) character of one-electron states. These methods (quite
surprisingly) required only a minor re-parametrization of the
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standard parameters’ sets and provide the numerical estimates
of heats of formation and eqilibrium geometries,21,23as well as
vertical ionization potentials,22 which are superior by accuracy
with respect to the corresponding SCF procedures. It was also
shown that the SLG methods have a great potential in the
derivation of classical force fields24 and the development of
hybrid quantum/classical schemes.3,25

When the MINDO/3 semiempirical Hamiltonian26 is used,
the SLG scheme leads to almost linear scaling of computational
costs with the system’s size (the quadratic term becomes
dominating only for very large molecular systems).21 The
NDDO-type Hamiltonian assumes a more detailed account of
the two-center Coulomb interactions. In combination with the
SLG wave function, it leads to the necessity of numerous
integral transformations induced by basis set transformations.
This step dominates the whole procedure and predetermines the
quadratic scalability of the SLG-NDDO methods23 with sub-
stantial coefficients at the quadratic terms. In the present paper,
we consider long-range Coulomb interactions in the standard
NDDO methods (MNDO,27 AM1,28 and PM329) and demon-
strate that the scheme previously adopted for estimates of the
two-center repulsion integrals is not optimal for a local
description of electronic structure. In the next section, we
describe the SLG-NDDO approximation for the electronic
structures of molecules and show that a modified form of
molecular integrals leads to significant simplification of the
whole procedure. Then, we compare different schemes for the
estimates of the two-center repulsion integrals and present
numerical results demonstrating the scalability properties and
the quality of the calculated heats of formation for the modified
SLG-NDDO procedure. Finally, we draw several conclusions
on the perspectives of fast semiempirical methods with a local
description of both electron correlation and one-electron states.

2. Method

2.1. Strictly Local Geminals. In this section, we consider a
sequence of basic steps leading to semiempirical NDDO
methods employing a trial wave function in the form of the
antisymmetrized product of strictly local geminals.23 The first
step in the wave function construction consists of orthogonal
4 × 4 transformations of atomic orbitals (AOs) for each atom
A with an {sp} basis set producing hybrid orbitals (HOs)tm

Each transformation matrixhA is parametrized by six Jacobi
angles. For hydrogen atoms, the only HO coincides with the 1s
orbital.

The HOs are assigned to geminals representing chemical
bonds and lone pairs: Each chemical bond is spanned by two
orbitals r and l for the right and left ends of the bond; each
lone pair is described by only one HO (r). The mth geminal
representing a lone pair is given by one configuration

with both electrons residing on the same HO, while the same
geminal representing a chemical bond is a linear combination
of three singlet configurations

where the first two configurations are ionic and the last one is
covalent. The geminals are mutually orthogonal and satisfy the

normalization condition

Thus constructed geminals are strictly local, because their carrier
spaces are formed by strictly local (one-center) orbitals. The
total wave function is constructed as their antisymmetrized
product

The electronic structure of geminals can be characterized by
the elements of one- and two-electron density matrices

(Notation here differs from that adopted in refs 21 and 23,
namely, by coefficient 2 atPm

tt′.)
The total energy is the sum of the electronic energy and the

core-core repulsion. The form of the last term adopted in the
MNDO, AM1, and PM3 methods is given in refs 27-29,
respectively. The electronic energy can be expressed through
the density matrices and molecular integrals. The transformation
of the one-electron basis set induces the transformation of all
molecular integrals (those of resonance, core attraction, and
intraatomic and interatomic Coulomb repulsion). The electronic
energy is a sum of five terms according to the types of
interactions in the Hamiltonian

The contribution from the attraction of electrons to cores is

The intraatomic contribution due to the electron repulsion is a
sum of contributions involving one and two HOs

The resonance interaction (electron transfer) is a sum of
intrabond contributions
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where the notationm ∈AB means that themth bond is one
between atomsA andB. The two-center electron repulsion can
be written as

The last contribution describes NDDO-specific interactions of
single bonds constituting one multiple bond

where t̃ ) l for t ) r and t̃ ) r for t ) l.
The total energy is a function of two classes of electronic

structure parameters (transformation matriceshA and geminal
amplitudesum, Vm, andwm) which are all determined variation-
ally. It is important that the total number of these parameters is
proportional to the system’s size (for the traditional SCF scheme,
the number of electronic structure parameters- MO LCAO
coefficients or elements of one-electron density scales asN2)
and they describe local fragments of electronic structure. It is a
necessary prerequisite for constructing a linearly scaling method.
The limiting factor in calculations are summations over the two-
center repulsion integrals (i.e., transformations of these integrals
from the basis of AOs to the basis of HOs). Here, we consider
a direct way to accelerate this step and to construct a linearly
scaling procedure for NDDO calculations of molecular energies.

2.2. Multipole Expansions. The energy of the Coulomb
interaction for two nonbonded atomsA andB can be extracted
from the total SLG energy and rewritten in a simple form

where we use the simplified notationm for tm and Pm
A is the

total electron density on this HO. It is important thatEcoul

includes only the standard Coulomb part of the core-core
repulsion. The two-center repulsion integrals entering eq 13 can
be readily rewritten in the basis of AOs

These integrals have the tensor properties of corresponding
multipole-multipole interactions. It can be used to construct
effective schemes for their approximate evaluation.30 The
standard NDDO schemes (MNDO, AM1, and PM3) replace the
multipoles by charge configurations.30 A point dipole is replaced
by two point charges of opposite sign, while the diagonal and
nondiagonal components of a quadrupole moment are modeled
by three and four point charges, respectively. It is assumed that
these point charges interact through semiempirical potentials,
producing necessary expressions for two-center molecular
integrals. This formulation does not allow one to get simple
expressions for the energy of the Coulomb interaction between

nonbonded atoms, and numerous summations in eqs 13 and 14
must be explicitly performed, making the whole procedure very
time-consuming.

The Coulomb interaction between nonbonded atoms given
by eq 13 can be formally rewritten in the form

where• denotes interaction between two charge distributions.
The strictly local character of one-electron basis functions
forming carrier spaces for geminals allows us to introduce point
multipoles describing charge distributions for atoms (given by
the expressions in square brackets in eq 15) with definite
densities on the HOs. For convenience, we write them in the
units -e. The atomic charge (monopole) is then

The characteristic lengths defining the dipole moment for an
(sp)-distribution and the quadrupole moment for a (pp)-
distribution depend on the principal quantum numbern for the
sp shell and the orbital (Slater) exponents

By using these parameters and the representation of a hybrid
orbital in the quaternion form (sm, Vbm),24 wheresm and three
components ofVbm are, respectively, the coefficients of the s
and px, py, pz AOs in the expansion of HOs explicitly referring
to their tensor properties (i.e., to the fact that the coefficients
sm are invariant under rotations of either the molecule itself or
the laboratory coordinate frame, whereas the coefficents forming
Vbm transform as components of a 3-vector under similar
rotations), we obtain the dipole moment of the charge distribu-
tion on atomA to be

The standard theory of multipole moments defines the quad-
rupole moment for a system of charges as

This tensor is defined as a traceless one, because the trace enters
only the energy contributions proportional to∆f (wheref is a
potential, and∆ is a sum of second derivatives with respect to
Cartesian coordinates, i.e., the Laplacian), which vanishes
exactly for the Coulomb potential1/R.

The Poisson equation∆f ) 0 is, however, not valid for
semiempirical potentialsf. Therefore, in the semiempirical
context, it is more convenient to introduce a second-order tensor
with a nonvanishing trace instead of the usual quadrupole
moment

It describes the distribution of charges but does not imply any
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assumptions about the properties of their interaction potential.
To get back to the usual quadrupole moment, we introduce the
total density on the p orbitals of atomA asPp

A ) ∑m∈APm
A[1 -

(sm)2]. It leads to a compact expression for the true quadrupole
moment on atomA

The potentials acting between the multipoles are not those
known from electrostatics, since they are based not on the
Coulomb interaction of the form of1/R but rather on a
semiempirical interaction potential approximating the effective
values of integrals in the region of intermediate interatomic
distances. The most popular semiempirical potential adopted
in the NDDO methods is that proposed by Dewar, Sabelli, and
Klopman31,32

It depends on the type of interaction (indicesl1 andl2 correspond
to the 2l1 and 2l2 poles located on atomsA andB, respectively).
The semiempirical approach to molecular integrals prompts two
types of formulas for interactions including quadrupoles: those
based on the tensorŜ and those based on an additional
assumptionof validity of the Poisson equation and, thus,
expressible through the usual quadrupole moment tensorsQ̂.
In the latter case, semiempirical potential is treated as if it
satisfied the condition∆f ) 0, simplifying the formulas but
mathematically incorrect. The general expression for the interac-
tion energy can be rewritten in a general form with the
components transforming as tensors

where

and∇R, ∇â, ... denote the Cartesian components of the gradient
operator. The Coulomb interactions between two nonbonded
atomsA andB are classified according to the quantum numbers
l1 and l2 of the AOs involved in the potential eq 22. The
following cases can be specified (we assume that the values of
all functions are estimated atRAB and writeR instead ofRAB

for brevity).
The charge-charge,{l1l2} ) {00}, contribution reads

The charge-dipole, {l1l2} ) {01} or {10}, interaction gives
two contributions

wherenbAB is the unit vector directed from atomA to atomB.
The dipole-dipole,{l1l2} ) {11}, interaction can be written

as a sum of contributions proportional to the scalar product of

dipole moments and the product of their projections on the line
connecting atomsA andB

The charge-quadrupole,{l1l2} ) {02} or {20}, interactions
for semiempirical potentials are the following

Under the additional assumption∆f ) 0, one obtains

The dipole-quadrupole,{l1l2} ) {12} or {21}, interaction in
general formulation can be written as

while in the case of the additional assumption∆f ) 0, one gets

The quadrupole-quadrupole,{l1l2} ) {22}, interaction includes
derivatives of a semiempirical potential up to the fourth order
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Under the additional assumption∆f ) 0, it yields

The formulas given above allow for relatively fast estimates of
the two-center contribution to the total energy. Moreover,
derivatives of the total energy with respect to molecular
geometry parameters can be easily calculated and used for an
efficient optimization. We implemented the SLG-NDDO method
employing the true multipole scheme for the two-center repul-
sion integrals. In the next section, we give some numerical
results illustrating its potential in semiempirical electronic
structure calculations.

3. Results and Discussion

In the present paper, we develop a semiempirical method
based on the SLG wave function. Special attention is paid to
the two-center repulsion integrals and interactions between
nonbonded atoms. These integrals are the most important part
of the NDDO scheme. It has been shown more than 50 years
ago33,34 that multipole expansions can adequately reproduce
analytical electron repulsion integrals for a wide range of
interatomic distances. These ideas are used in the standard
NDDO methods where point multipoles are modeled by
appropriate charge configurations. The last approximation makes
the integrals non-invariant with respect to rotations of the
coordinate frame, because the charge configurations have
nonvanishing higher multipole moments. In actual calculations,
this non-invariance is masked by performing them in the
diatomic coordinate frame (rotations of the coordinate axes
induce rotation of the diatomic coordinate frame, and the
integrals are calculated identically). The formulas given in the
previous section restore the invariance, because they are written
in a tensor form. The change of the computation scheme leads
to changes in numerical estimates, although both schemes have
the same asymptotic behavior atR f ∞. We analyze the
consequences of these modifications for the molecular integrals
and the total energy.

First, we consider the two-center repulsion integrals on the
example of two carbon atoms. Equation 22 shows that the
Dewar-Sabelli-Klopman semiempirical potential depends on
three parameters (F0, F1, andF2). In the standard formulation,30

these parameters are determined from the condition that at the
limit R f 0 the one-center integrals describing the interaction
between two monopoles (gss), two dipoles (hsp), and two
quadrupoles (hpp) must be reproduced. This condition is of
course arbitrary, and for example, the one-center limit for the
integral (ss|zz) is not reproduced by this scheme. The reason is
simple: In the sp basis, there are five independent one-center
integrals (Slater-Condon parametersF0, F2, G1), which in the
general case cannot be reproduced by only three parametersF.
Moreover, these formulas are designed for interatomic distances
not approaching zero. In the case of small interatomic distances,
the difference between integrals evaluated using the formulas
based on the charge configurations and based on the true
multipoles becomes significant. Therefore, when we change the

computation scheme, the one-center limit values also change.
Taking this into account, we can propose two different recipes:
The first one is based on the standard values ofF, while the
second one uses modified values ofF reproducing the one-center
limits (gss, hsp, andhpp). In the latter case, the value ofF0 is not
modified ()2gss

-1). The parametersF1 and F2 in the standard
scheme are determined numerically. When we use the point
multipoles and their interactions, we can obtain analytical
expressions for these parameters. For example

It leads to the estimateF1 ) 0.969 982 7 au for carbon, which
can be compared with the standard value of 0.813 098 3 au.27

Figures 1-3 illustrate the dependence of the integrals (ss|sz),
(sz|sz), and (sx|sx) (z axis connects two atoms in the diatomic
coordinate frame) for the scheme based on the charge configu-
rations and for that based on the true multipoles with the
standard and modified parametersF1. These figures show that
the curves differ significantly in the region of small interatomic
distances. By contrast, in the case ofR > 2 Å, all the curves
are quite close, so that only the closest neighbors are touched
by the modification of the procedure. The convergence rate
strongly depends on the integral type. In general, the curves
with the adjusted value ofF1 seem to be a better approximation
to the standard ones than those based on the point multipoles
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AB )

f′′22R - f′22

18R3
tr(Q̂AQ̂B) +
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Figure 1. Dependence of the (ss|sz)CC integral on the interatomic
distance.

Figure 2. Dependence of the (sz|sz)CC integral on the interatomic
distance.

F1 ) 1
2( hsp

D1
2)1/3

(34)
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with F1 unchanged. At the same time, in the case of the integral
(sz|sz), the better coincidence of the curve based on modified
F1 with the standard curve in the region of smallR leads to a
worse agreement for larger values ofR.

We tested the performance of two types of procedures
tentatively possible for evaluating interactions involving qua-
drupoles. We considered the (ss|zz) and (ss|xx) integrals. The
interaction of charges gives the main contribution to these
integrals. It is not affected by our modifications of the
computation scheme. Therefore, we analyze only the contribu-
tion having the form of the charge-quadrupole interactions (or,
equivalently, the differences (ss|zz) - (ss|ss) and (ss|xx) -
(ss|ss)). These interactions constitute about 5% of the integrals
at the region of characteristic interatomic distances between
bonded atoms, and their contribution decreases asR-2 for larger
R. Figures 4 and 5 represent the dependence of these differences
on the interatomic distance calculated using the standard
formulas and also formulas based on eqs 28 and 29. For
comparison, we also plot these contributions for the usual
Coulomb law1/R. As expected, the expressions which do not
use the assumption of validity of the Poisson equation for the
potential give a better approximation to the standard values
(especially for smallR). The difference between two ap-
proximations based on the multipole-multipole interactions
converges to zero in both cases asR-2. In the case of the
charge-quadrupole interactions given by eq 29, the one-center
limit is exactly zero ((ss|pp) and (ss|ss) are equal). It illustrates

the fact that all one-center integrals cannot be reproduced as
limiting cases of the corresponding two-center ones. In other
cases (standard scheme and that based onŜ), the one-center
limit for the difference between these integrals (which is equal
to -0.76 eV for the one-center integrals used in the MNDO
scheme) is significantly overestimated.

It is important to test how the proposed modification of the
computation scheme affects the performance of the SLG-NDDO
approach. The first step in this direction is to analyze the
computation time as a function of the scheme and the system’s
size. As test objects, we consider regular hydrocarbon chains
CnH2n+2. Figures 1-5 demonstrate that at largerR the change
of the scheme can only slightly affect the values of the integrals.
Therefore, if the scheme based on the atomic multipoles is
applied only to well-separated pairs of atoms, the modified SLG-
NDDO method can be used even with the parameters given in
ref 23 (i.e., without any additional re-parametrization). In
subsequent calculations, we adopt the atomic multipole scheme
for R > 3 Å, while the short-range repulsion integrals are
calculated using the charge configurations scheme. To further
specify the computation scheme, we use the MNDO semiem-
pirical Hamiltonian with the standard values of theF parameters
and the formulas based on theŜ tensor for the interactions
involving quadrupoles.

Figure 6 demonstrates the ratio of computation times for two
SLG-MNDO schemes (based on the charge configurations and
multipoles, respectively) as a function of the number of carbon

Figure 3. Dependence of the (sx|sx)CC integral on the interatomic
distance.

Figure 4. Dependence of the difference (ss|zz)CC - (ss|ss)CC on the
interatomic distance.

Figure 5. Dependence of the difference (ss|xx)CC - (ss|ss)CC on the
interatomic distance.

Figure 6. Ratio of computation times for the SLG-MNDO method
with different schemes for the two-center repulsion integrals.
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atomsn in CnH2n+2. It can be seen that the dependence has two
regions: It is almost linear for smallern, and it is close to a
constant for largern. It can be readily understood by taking
into account that in the case of the charge configurations scheme
a qudratic contribution to the dependence of computation costs
on the system’s size dominates over linear contribution even
for small molecules. At the same time, the scheme proposed
above significantly reduces namely the quadratic component
of this dependence, and for relatively small molecules, a linear
contribution dominates. It is important that in the limit of large
n, where a quadratic contribution is again dominant, the true
multipole scheme leads to more than 30 ple acceleration of SLG-
NDDO calculations.

It is clear that simple replacement of the charge configurations
by the atomic multipoles cannot affect the scalability of the
method. Indeed, even very fast estimation of the two-center
Coulomb interactions leads to a quadratic dependence of
computation costs on the system’s size for larger molecules.
To make the scheme truly linearly scaling, it is necessary to
neglect interactions between very distant atoms. Cutoff proce-
dures of that sort are well-justified only for local states. In the
case of the SLG method, it is particularly simple, because one-
electron states forming carrier spaces are atom-centered. Figure
7 shows the dependence of the required computation time on
the system’s sizen for the modified SLG-NDDO method where
all interactions between atoms separated by more than 20 Å
are totally neglected. This figure unequivocally demonstrates
that the method belongs to the family ofO(N)-methods. It is
important that the cutoff procedure leads to a very small
modification of the calculated heats of formation (less than 0.03
kcal/mol per CH2 fragment). Of course, in the case of more
polarized molecules with significant effective atomic charges,
the charge-charge interactions beyond 20 Å should be explicitly
considered to obtain the same accuracy. We can try to compare
our results (9000 atoms for about 100 s on a 0.7 GHz pentium
III computer) with those obtained in the framework of the
LocalSCF method (120 000 atoms for about 16 000 s on a 2.4
GHz pentium IV computer).12 Direct comparison of these data
shows that the modified SLG-NDDO method is about 2 orders
of magnitude faster than the LocalSCF one. At the same time,
such a comparison is not quite correct, because the protein
calculated in ref 12 is not one-dimensional like the hydrocarbon
chain and, therefore, requires more interactions to be taken into
account. Moreover, the protein contains polar atoms whose long-
range Coulomb interactions can affect the values of cutoff
parameters necessary to obtain accurate results.

A detailed discussion of the quality of the SLG-NDDO
numerical estimates as compared with the SCF-NDDO ones
is given in ref 23. In the present paper, we consider only the
heats of formation on the same set of molecules as given in ref
23. The difference between calculated and experimental values
can be found for each of the molecules and for the calculation
methods. This error can be considered as a random variable,
and empirical distribution functions of errors for both methods
can be readily constructed. Figures 8 and 9 represent these
functions in the coordinates linearizing the normal distribution
plotted for the SLG-MNDO and SCF-MNDO methods, respec-
tively, as well as linear fits for both distributions. The assump-
tion of a normal distribution law for the errors seems to be valid
for both methods, because the sets of points are close to the
corresponding linear fits (values ofR2 are 0.967 and 0.983,
respectively). The abscissa for the crossing of a linear fit and
the x axis gives the value of thea parameter (average of the
error’s distribution), while the slope of a linear fit isσ-1. Our
analysis shows that the methods have equal values ofσ (about
7.6 kcal/mol), but the values of thea parameter differ
significantly. In the case of the SCF-MNDO method, this value
is -2.3 kcal/mol and certifies that heats of formation are
significantly underestimated in this method, while in the case
of the SLG-MNDO method, the average is positive and its
magnitude is more than 5 times smaller, demonstrating the
practical absence of the systematic error in the SLG-MNDO
calculations. According to the Student’s criterion, the average
errors for these methods are statistically different with a
probability larger than 90%.

Figure 7. Dependence of computation times on the system’s size. Figure 8. Empirical distribution of errors for heats of formation as
obtained by the SLG-MNDO method.

Figure 9. Empirical distribution of errors for heats of formation as
obtained by the SCF-MNDO method.
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4. Conclusions

In the present paper, we further develop semiempirical
methods based on the strictly local geminals form of the trial
wave function contrasting with the traditional SCF-based
semiempirical quantum chemistry. The main result is that using
invariant multipolar forms of the two-center repulsion integrals
leads to a significant (more than 30 times) acceleration of the
computation procedure. As a consequence, we propose the
modified SLG-NDDO methods for electronic structure calcula-
tions of large molecular systems. These methods can be easily
transformed into a linear scaling form by the applying a cutoff
procedure for the two-center Coulomb interactions. It is
particularly important that such a modification of the calculation
procedure does not imply any re-parametrization. The SLG-
NDDO methods provide high-quality estimates for the heats of
formation of molecules, which are well-described by two-
electron, two-center chemical bonds and by lone pairs.

An important component of the scheme proposed is the
possibility to sequentially define and use in calculation the
atomic multipoles. They can be further used to calculate
electrostatic potentials inside and outside molecules.35 The
tentative prospects of this scheme can be considered from
somewhat different points of view. The SLG-MINDO/3 method
allowed us to construct a route from semiempirical quantum
chemistry to classical force fields.36 A multipole scheme for
two-center interactions opens an access to the construction of
an NDDO-based deductive molecular mechanics (DMM). The
construction of a DMM procedure is only one of many ways to
further develop the computation schemes of the SLG-NDDO
method. It is possible to construct a method where all two-
center repulsion interactions (including those between bonded
atoms) are calculated using the multipole scheme. At the same
time, this modification will require some re-parametrization of
the Hamiltonian. An important way to generalize this treatment
is to implement a scheme with local electron groups of arbitrary
form (numbers of electrons and orbitals). A step in this direction
has been made in ref 37, where the trial wave function in the
form of the antisymmetrized product of strictly local geminals
and molecular orbitals has been proposed and analyzed. On the
other hand, it is clear that the SLG wave function totally neglects
interbond electron transfers and dispersion interactions. They
can be taken into consideration using perturbation expansions
developed for the geminal-type wave functions.38,39 These
interactions are short-range, and therefore, their account will
not destroy the linear scalability of the SLG-NDDO methods.
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